## UNDERGRAD MECHANICAL ENGINEER | UNIVERSITY OF CENTRAL FLORIDA









## INTAKE SYSTEM - FSAE



### What?

- · Redesign a lighter, cost-efficient, and higher-performing system.
- . Comply with competition regulations and space constraints.
- Perform calculations for optimization.



### How?

- . Used SolidWorks and Ansys Fluent to produce a CAD model and CFD analysis.
- a lightweight and reliable product.



## Results

- . CFD analysis and performance testing proved more even airflow and greater performance.
- Used Nylon-12 SLS printing to create
  Created a higher-performing system used in competition.

## EXHAUST SYSTEM - FSAE



### What?

- Research and Design a muffler and Design and test different iterations. exhaust tubing to adhere to regulations and performance
- · Utilize lightweight and reliable material

- Analyze CFD results to select the most effective design.
- Source and manufacture 304 Stainless Steel to satisfy stress, temperature, and sound requirements. . Reliable in all conditions.

### Results

- · Designed an effective and lightweight system used in competition.
- · Simple manufacturability and servicing.

# CHASSIS TABS - FSAE





- · Design and manufacture a tab to withstand stress and vibrations from the muffler and chassis.
- · Improved weight and cost-efficiency through topology optimization.

- Design using SolidWorks and ran FEA using Ansys.
- · Water-jet cut steel tab with a safety factor of 1.3.
- · TIG welded.